) DrillBit

The Report is Generated by Drill Bit Plagiarism Detection Software

Submission I nformation

Author Name

Title

Paper/Submission ID
Submitted by
Submission Date

Total Pages, Total Words
Document type

Result Information

Similarity 10 %

NIKHIL RAI

DSA

3026581
librarian.adbu@gmail.com
2025-01-24 15:20:43

110, 12262

Others

- T
Sources Type Report Content
Student
Paper Quotes
0.1% 0.18%
Journal/
Publicatio
n 3.2%
Internet
6.71%
Words <
5,1.57%
Exclude Information Database Selection
Quotes Excluded Language English
References/Bibliography Excluded Student Papers Yes
Source: Excluded < 5 Words Excluded Journals & publishers Yes
Excluded Source 0% Internet or Web Yes
Excluded Phrases Not Excluded Institution Repository Yes

) DrillBit

DrillBit Similarity Report

10 47

A

A-Satisfactory (0-10%)
B-Upgrade (11-40%)
C-Poor (41-60%)
D-Unacceptable (61-100%)

SIMILARITY % MATCHED SOURCES GRADE
LOCATION MATCHED DOMAIN % SOURCE TYPE
1 www.geeksforgeeks.org q Internet Data
2 www.wileyindia.com q Publicaion
3 fastercapital.com q Internet Data
. www.studysmarter.co.uk <] 'ntemetDaa
S5 egyankosh.ac.in <1 Publication
6 www.tutorchase.com <1 IntemetDaa
7 www.studysmarter.co.uk <1 IntemetData
8 medium.com <] IntemetData
9 medium.com <1 'ntemetData
10 apply.jaipur.manipal .edu <] Publication
11 qdoc.tips <1 'ntemetData
12| csel10textbook.s3-us-west-1.amazonaws.com <1 Publication
13 technodocbox.com <] IntemetData

www.geeksforgeeks.org

< 1 Internet Data

https://www.geeksforgeeks.org/learn-data-structures-and-algorithms-dsa-tutorial/
https://www.wileyindia.com/media/pdf/Appendix-A.pdf
https://fastercapital.com/content/Disjoint-sets--Mutually-Exclusive-and-Disjoint-Sets--What-Sets-Them-Apart.html
https://www.studysmarter.co.uk/explanations/computer-science/data-structures/priority-queue/
https://egyankosh.ac.in/bitstream/123456789/10251/1/Unit-2.pdf
https://www.tutorchase.com/notes/cie-a-level/computer-science/8-1-3-normalization-and-database-design
https://www.studysmarter.co.uk/explanations/computer-science/algorithms-in-computer-science/vertex-cover-problem/
https://medium.com/@umutarpayy/zero-to-hero-mastering-data-structures-and-algorithms-with-python-d1b0d2a4f224
https://medium.com/@rahulptl556/efficient-problem-solving-with-dynamic-programming-a87b9301c13e
https://apply.jaipur.manipal.edu/content/dam/manipal/muj/foe/documents/CCE/Handout%202021-22.pdf
https://qdoc.tips/download/fundamentals-of-data-structures-ellis-horowitz-amp-sartaj-sahni-pdf-free.html
https://cse110textbook.s3-us-west-1.amazonaws.com/Java+Concepts+3rd+3E+Cay+Horstmann.pdf
https://www.technodocbox.com/3D_Graphics/85880671-Inf-2b-avl-trees-lecture-5-of-ads-thread-kyriakos-kalorkoti-school-of-informatics-university-of-edinburgh.html
https://www.geeksforgeeks.org/union-by-rank-and-path-compression-in-union-find-algorithm/

Internet Data

Chen-2017

15 docplayer.net <1
16 qdoc.tips <1 'ntemetData
17 moam.info <] IntemetData
18 documents.mx <1 'ntemetData
19 www.dx.doi.org <] Publication
20 www.msec.ac.in <] Publication
21 www.tutorchase.com <1 'ntenetData
22 jareacin <1 Publicaion
23 www.crio.do <1 IntemetData
'24] livrosdeamor.com.br <1 IMemetDaa
25 Scheduling Non-Preemptive Deferrable Loads by OBrien-2015 <1 Publication
26 Incremental computing with data structures by Morihata-2017 <1 Publication
27 pdfcookie.com <1 'ntemetData
28 quizlet.com <1 'ntemetData
29 Electrostatic lock in the transport cycle of the multidrug resistance by <1 Publication
Vermaas-2018
30 www.tutorchase.com <1 IntemetData
31 deptapp08.drexel .edu <1 Publication
. moam.info <] IntemetData
33 Resource Management Games for Distributed Network Localizationby =~ <7~ Publication

https://www.docplayer.net/20672665-Introduction-to-data-structures.html
https://qdoc.tips/learning-algorithms-through-programming-and-puzzle-solving-2-pdf-free.html
https://moam.info/texts-in-computer-science_59c08cec1723ddbea5dd0089.html
https://vdocuments.mx/b-tree-file-system-report.html
https://dx.doi.org/10.1016/j.comnet.2021.108340
http://www.msec.ac.in/files/cse/lab/3_2.pdf
https://www.tutorchase.com/notes/ib/computer-science/c-2-5-introduction-to-the-deep-web
https://www.iare.ac.in/sites/default/files/OBE/IT_OBE_BOOKLET_UG20_REGULATION.pdf
https://www.crio.do/blog/top-10-sorting-algorithms/
https://livrosdeamor.com.br/documents/arm-cortex-m-microcontrollers-5bff61745c614
https://dx.doi.org/10.1109/tpwrs.2015.2402198
https://dx.doi.org/10.1016/j.scico.2017.04.001
https://pdfcookie.com/documents/american-computer-science-league-acsl-rules-and-handbook-xov14y7696v1
https://quizlet.com/144764248/data-structures-flash-cards/
https://dx.doi.org/10.1073/pnas.1722399115
https://dx.doi.org/10.1073/pnas.1722399115
https://www.tutorchase.com/notes/ib/computer-science/2-4-1-types-of-application-software
https://deptapp08.drexel.edu/catalog/archive/pdf/2012/2012-2013_engineering.pdf
https://moam.info/maintaining-consistency-of-dynamic-cardinality_5c88bd76097c4704178b459b.html
https://dx.doi.org/10.1109/JSAC.2017.2659318
https://dx.doi.org/10.1109/JSAC.2017.2659318

. Submitted to U-Next Learning on 2025-01-24 11-36 3022004 <1 Student Paper
35 testbook.com <] IntemetData
36 wecclas.net <1 'ntemetData
37 Planar Graphs Have Bounded Queue-Number by Dujmovi-2020 <1 Publication
38 springeropen.com <] IntemetData
39 www.academia.edu <1 ImemetData
40 A study on the dynamic characteristics of the Korean Yi-dynasty bell tby 7 Publication
Su-1987
41 CFSpro ray tracing for design and optimization of complex fenestration <7~ Publication
systems by Kostro-2016
. Control of chaos methods and applications in mechanics by Fradkov- <1 Publication
2006
43 instasize.com <1 'ntemetData
moam.info <1 IntemetData
45 moam.info <] IntemetData
46 revistaschilenas.uchile.cl <1 'nternetData
47 Publication

www-personal .acfr.usyd.edu.au

<1

https://testbook.com/maths/depth-first-search
http://wcclas.net/kuj/hackerrank-multiset-python-solution.html
https://dx.doi.org/10.1145/3385731
https://jwcn-eurasipjournals.springeropen.com/articles/10.1155/2009/482520
https://www.academia.edu/12253897/Journal_of_Computer_Science_March_2015
https://dx.doi.org/10.1007/BF02971657
https://dx.doi.org/10.1007/BF02971657
https://dx.doi.org/10.1364/AO.55.005127
https://dx.doi.org/10.1364/AO.55.005127
https://dx.doi.org/10.1098/rsta.2006.1826
https://dx.doi.org/10.1098/rsta.2006.1826
https://instasize.com/learn/photo-editing-advanced
https://moam.info/a-recurrent-neural-network-to-traveling-salesman-problem_5c21f7e9097c471c5c8b459d.html
https://moam.info/journal-template-international-journal-of-computer-science-and-_5b74b918097c4702528b4626.html
https://revistaschilenas.uchile.cl/handle/2250/44443
https://www-personal.acfr.usyd.edu.au/tbailey/ctext/ctext.pdf

1 e T 11 | =" 9

Unit 1: Basics of Algorithms ... 10
COUrSE ODJECHIVES ..ottt e ettt e e st e e e an e e e sbeeeeeenneeeens 10
107010 ET @ W) e7o] 3 1 =Y PR 10
JI O IR 1o T [0 T3 1T o R 10
1.1 Fundamentals of Problem SoIViNgG.........c.c.uuuiiiiiiiiiie e 11

Example: Finding the Largest Number in an Array ... 13
1.2 Classification of AlgOrithms.... ..o 14
1.2.1 Based ON PUMPOSEooiiiiiiiiii ettt e e e e e e e e e 14
1.2.2 Based on Design Paradigm ... 15
1.2.3 Based on PerformMancCecooii it a e 15
Example: Classification of Sorting Algorithmscccooiiiiiiii e 16
1.3 UNIE SUMMEIY ...ttt sttt e e ettt e st e e e e bt e e e anbe e e e ennreeeennees 16
Practice ProbIEMS...... ... e 16
QUUIZ ettt ettt ettt et e e e aat et e e e tae e e et teee e e taeeeaaRteeeeanteeeeareeeeeantaeaeans 17
Practical QUESHIONS. ..o et e e e e e e e e e eeeaeeas 17

Unit 2: Algorithm ANalysis.........cccoiiiiieir e nmnnes 18
COUrSE ODJECHIVES ...ttt et e et e e e s anreee e 18
1070 TH | £TC T @ U oo o =Y R 18
22 I 1o T[0T 4o o 18
2.1 Basics of AlGorithm ANAIYSIS.........ocuuiiiiiiiiieie e 19

TimME COMPIEXILY coeeeieiiieeeeee e e e e e e e e e eaeaes 19
SPACE COMPIEXITY ..o e aaaaaaaas 19
Key CONSIAEIatiONS.t e e e e e e e e e e e eeeaeeas 19

2.2 ASYMPLOLIC ANGIYSIS. ..ceiiiii ettt e e e e e e e e e e e e e e e e annes 20
(0707 00100 o] 0T N (o) 7= 1o o =3 20

T g oo Ty ¢= 1o o7 SR OPRRRRR 20
Example: Time Complexity of a Nested LOOP......c..uuriiiiiiiiiiiiieeee e 20
2.3 Mathematical Analysis of Iterative and Recursive Algorithmscccccceeiiiiiiiieeeenes 21
Iterative AlGOITRMSeeeieeeeeeeeeeeeee e 21
AANAIYSIS: ...ttt e a e e et et e aaas 21
Recursive AlGOrithMSoeeiiiiieeeeeeeeeeee e 21

F N = 11 LS PR 22

2.4 Empirical Analysis of AlgOrithms..... ... 22
] (=] o1 TSR 22
AQVANTAGES ...t e e e e s 22
Example: Comparing Sorting AlGOrithms ..o 23
2.5 UNIE SUMMAIY ...ttt e e e et e e e e e e e et ae e e e e e e s bnbaeeaeeeeensnraneaaaeeannns 23

(e e= (o1 ([oTo Tl 0] o] 1= 1 41 23

Practical QUESHIONS.oi it e e e e e e e e e e e et e e e e e e e enrraaeaaee s 24
Unit 3: Models of Computation ...t 25
COUISE ODJECHVES ...coieiiiieiiee et e e e e e e e e e e e e e s e e e e e e e e nnraees 25
COUISE OULCOMES. ...ttt ettt e e e e e et e e e e e e s ab bt e e e e e e e e aanbeeeeeeeeesanbnreeas 25
K B0 N 10 [8 e (o o PR 25
BT RAM MOGEL ...ttt e e e st e e e st e e s anteeessntaeeesbeeeeeanteeaeans 26
Features of the RAM MOdEl........ ..o e 26
Importance of the RAM MOGEI ... e 26
Example: Time Complexity in the RAM Modelcoooiiiiiiiiiiiiie e 26

3.2 TUFING MACKIINE ... e e e e e e e 27
Components of @ TUrNG MaChINE..........cocooiiiiiiiiiie e 27
Working of @ TUNNG MaChiNEcoiiiiiiiiiieic et a e 27
Example: Turing Machine for Unary Addition ... 28
Significance of TUNNG MaChINES.............uuuiiiiiiiieeeeeeee e 28
3.3 UNIE SUMMANY ...ttt b et e e e sbe e e e s eabeee e 28
g = T3 [T o] o] =T o o T 29
QUIZ e et e e e e e e e e e e e e ————a e e e e e —————aaeeaann——nes 29
Practical QUESHIONS.coi it e e e e e e e e e e e e e e e e aeaeae s 29
1 oo 11 - PSP 30
Unit 4: Abstract Data TYPeS (ADTS)....cccciriicrrrmrrrriissssssseeessssssssssseesssssssssssssssssssssssssssssssssssnnnes 31
COoUIrSE ODJECHVES ..ot e e e e e e e e e e e e e e e e e anreees 31
COUISE OULCOMES. ...ttt ettt ettt e e e e e e et e e e e e e st ettt e e e e e e s annbreeeeeeeeaannnreeas 31
7 3 g oo [U T2 o) o 5SS 31
S S - Vo] SO 32
[1= 1 0T o] o S 32

L@ 07T =1 110 o1 TR 32
APPIICALIONS ... e s 32
Example: Stack Implementation in CH+.........ociiiiiiii e 33
O 1N = SRR 34
[0 0T (o] o PRSI 34

(O] 01=T = (o] a1 JP U U P P PR PRTTTR 34

Y o] o] o= o] o - OSSR 34
Example: Queue Implementation in CH+ ... 35
4.3 CirCUlAr QUEUES.........eeeeeiieie e e ittt ettt e e e s e st e e e e e e e st e e e e e e e e aannteeneeaeeseannnreaneeaeens 36
[1= 10T o] o PSSR 36

L@ 01T =1 (10T o1 RSP 36
Advantages of Circular QUEBUESooiiiiiiiii e 36
Example: Circular Queue Implementation in C++ ... 37
O a1y S0 0T =PSRRI 38

e = (o (o1 T (0] o] (=10 4 1= TR 39

Practical QUESTIONS.......co et e e e e e e e e e ee e e 39
Unit 5: Implementations and Advanced Structuresccccccceeviriiieiierse e 40
CoUrSE ODJECHVES ..ottt e e e e et e e e e e e e e e e e e e e nneees 40
1070 TU | £T @ U oo o =1 O EE 40
oS0 1o o [o 1o o TSR 40
5.1 Implementation of Stacks USiNg QUEUES...........cueeiiiiiiiiiiiiei e 41
1070] o7 o] R TR 41
MEENOAS ...t e e e e e e e e e e e 41
Example: Stack USing TWO QUEUESuuiiiiiiiiiiiiiieee et 41

5.2 Implementation of Queues UsinNg Stacks..........ccuuiiiiiiiii e 43
(07013 Te7=T o UUURT P PP PPPRPRPTTRT 43
1 o o - PRSI 43
Example: Queue Using TWO Stacksccooiiiiiiiiiiii e 43

5.3 Priority QUEUES aNd HEAPS.ccoiiiiiiiiiiii e 44
PrIOFtY QUEUES ...ttt e et e e s bt e e e st e e e sbteeeeanneeaeans 44

(O 01T = 1110 o [J PSPPI 44

[1= Y= T 1SN 45

F Y o] o] Tor=1 i o] 1= SRR 45
Example: Min Heap Implementation in C++ ..., 45

5.4 UNIt SUMMAIY ..ottt ettt e e e e e ettt e e e e e e ettt e e e e e e e nnneeeeaeeeaannneees 46
Practice Problems......... ..ot e e e 46
QUIZ e e e e e e e e e e e e e e e ananees 46
Practical QUESHIONS.oi it e e e e e e e s et be e e e e e e ennrraareae s 46
Unit 6: LINKed LISEScccciiiiiiiii e n e s s s e s s n s e e e e e e e e e e s e e s e e s nnnnnnnnns 47
COUIrSE ODJECHVES ...coieeieiiiiiee et e e e e e e e et e e e e e e et a e e e e e e e e nnraees 47
COUISE OULCOMES. ...ttt ettt e e e e e et e e e e e e st et e e e e e e e e aanbeeeeeeeeesanbneeeas 47
(O 20N [a1 1o T[0T 1o T o PP PRRRP 47
6.1 Types Of LINKEA LSSeeieiiiieeieee et e e e e 47
6.1.1 SiNgly LINKed LIStceo e 48
= 0]) [48

6.1.2 DOUbIY LINKEd LIStooeiiiiiieiiiiic et 49
EXAMPIE ... e e 49

6.1.3 Circular LINKEd LIStuiiiiiiiieiie ettt e e 52
= 0 1]) [P RRRR 52

6.2 Search and Update Operationsoeeiiiiiiiiiiiiiiiee e 53
Searching in @ LinKed LiSt.........ueuiiiiiiiieeeeeee e, 53
= 03T o] =SSOSR 53
Updating @ Node in @ Linked LiSt...........coooiiiii e 54
= 0]) [54

6.3 UNIt SUMMIAIY ...ttt e et e e st e e e snee e e e snneeeas 55

QUIZ e e e e e e e e e e e e e enranes 55
Practical QUESHIONS.co ettt e e e e e e e e e e eae s 55
L0 L T I (= YOS 56
COUrSE ODJECHIVES ..ottt et e e sttt e e st e e e snte e e e sbeeeeennneeeens 56
COUSE OULCOMES. ... eiiiiiii ettt e e e e et e e e e e e s et a e e e e e e e e se st e reeeaaeseassssaaneeeeeesanserenes 56
400 L1 Yo [8 T i) o S 56
A =1 = LV I (=T TSN 57
(o 01T [RRRRRPRIN 57
e 0T 0] (=SS OPRRRSR 57
T.2TrEE TraVEISAIS.....ceeeiiiiiiiiieieeeeeeeeeeee e 57
7.2.1 INOTAEr TraVEISAl ...ttt e 57
e T o L (O PRI 58

7.2.2 Preorder TraVerSal..........oooouiiiiiiii ittt e e e e e e e e e e et 58
7.2.3 POStOrder TraverSalcccccciiiiiiiiiiiieeee et eeaeaeans 58
7.2.4 Level Order TraVerSalccccccccuuueeiiiiiiiiiiieiieeeeeeeee aeaeaeans 58
7.3 Binary Search Trees (BSTS). i ittt e e e e 58
e 0T 0] (=SSOSR 59

L0 07=T = 1110 1R 59
A N R I Y = TSP 59
[0 7= 1 [0] o < 53PS 59
EXAMIPIE: . e e e e e e 59

7.5 REA-BIACK TrEES ittt ettt s e e e e e e e e et e e e e e e e eeeennaaaas 60
(O] 0= =4[] 0 1S3 PP P PR PR 60
OIS o =NV I (T PSP 60
F o A= a1 €= Lo = PSP 60
e 0T 0] (=SSOSR 60

P A = 1 (=T TR RRRRRRRSRPRN 61
L (0] 01T 13RS 61
APPIICALIONS: .. e e e e n e 61
7.8 UNIt SUMMIAIY ...coiiiiiiiitiieee ettt e e e e e e e e et e e e e e e s bbaeeeaeeesasaseeeaaeeeennnrenes 61
L = Toa [T =Y o] o] =Y o 3 T P 61
QUUIZ e e e e e e e e e e ———e e e e e e aea———eaaeeeaaata——eaaaeeaaannraees 62
PractiCal QUESTIONS.........uuuiiiiiiiiiiieiiiiiie ettt e e eeee e eeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeeeaeaaeaaaeaeaaaaaees 62
Unit 8: Disjoint Sets......cccocviiiiiiiiiir i 63
COUrSE ODJECHIVES ...ttt et e e s e e e e e nabeeeeaa 63
COUISE OULCOMES.t e aa b aaaaaaasasasasasassssssnsssssnsnsnsnsnsnnns 63
I O [a1 (oo U Tox1 0T o [PPSO 63
8.1 Introduction t0 DiSJOINt SEIScc.uiiiiiie i 64
NG 070 (o= o) SO PP PR ORI 64

D=0 0]][64

8.2 UNION-FINA OPEIatioNS.......cciiiiiiiiiiiiiie ettt a e e e et e e e e e e e sanbaeeeaaeeaaans 64
8.2.1 UNION OPEratioN.........cuviiiiie ettt e e e e e e e e ar e e e e e e 64
= 11 1]] USRI 65

8.2.2 FINd OPEIatioN ... oo e aaaas 65
=Yg g o] Lo (O SRR PRRRR 65

8.3 Efficiency of Union-Find Operationsocueeiiiiiiiiiii e 66
TiME COMPIEXILY: ...eiieeiiee ittt e et e s e e e s e e e e 66
Performance COmMPAriSON:coiiiiiii ittt et e e e e e e sbe e e e e sabeeeeans 66
8.4 Practical APPlICAtIONS.cciiiiiiieiee e 67
oI I €] =T o] g W 7] a1 aT=Tox 1171 1Y AP PPRRP 67
8.4.2 NetWOrK DESIGN ...t e e e e e e e e e e e aa e e e e e e e e e e e e e e e aaaaeaeaas 67
8.4.3 IMaQge PrOCESSING ..o ii ittt e e e e e e e e e e e e e e e aaaaaaaaaaaaaaaaaaaaaaaaaaaas 67
Example: Kruskal’s Algorithm 67
8.5 UNIt SUMMANY ...ttt e e e e et e e e e e e et e e e e e e e e nnreneaaaeeanns 67
PractiCe Problems.o e e et e et e e e e e e e e e e eaees 68
QUIZ oottt e e et e e e e e b e e e e e baeeeaat—eeeeabaeeeaabteeeeabeeeeaaraeeeeaaraaaeans 68
Practical QUESHIONS.oi it e e e e e e e e e e et e e e e e e e nnrranaaae s 68
oo 11 = 2 PSPt 69
Unit 9: Sorting AIgOrithms.........cooi i r e sss e e e s mn e e e e s s nmnnns 69
(070101 Y@ o] = Tox 1177 S 69
COUISE OULCOMES.eeeeeee ettt ettt e e e e e e bttt e e e e e s nbete e e e e e e e aaanaeeeeeeeeesannnneeas 70
1 20N [g1 1o T[0T oo PP PRRRP 70
9.1 Brute FOrce APPrOACKN........ooii ittt e et e e e e e e e e e e e enns 70
9.1.1 Sequential SEAICH ... 70
9.1.2 BUDDIE SOtoeiiiieieie ettt s 71

1S Tt I =1 [T i o] o S T) o SRR 72
9.2 Decrease-and-Conquer APPrOACH...........ciiiiiiiiiiiieiie e e e e e e e e e e s rre e e e e e e e aanes 72
1S 02 B [T 10T TS T o (RS 72
9.2.2 BINAry SEAICI ...t a e 72
9.3 Divide-and-Conquer APPrOACKciiii i a e e e e e e e e e e 73
1S IR I 1T QT) o SR 73
1R T 1= o T IR T o S SRR 73
9.4 Transform-and-Conquer APPrOACK...........coeie i i ee e e e e e e e e s e e e e e e enes 75
1S o 1= =T o o T A RO SOTRRS 75
9.5 Linear Sorting AIGOMTRMSuiiiiiiie e s 76
9.5.1 COUNEING SOM.....oiiiiiie i e e e e e s e e e e e e s ae e e e e e e e eanneees 76
9.5.2 RAAIX SO ...t e e e e e a e e e 76
O9.5.3 BUCKET SOOI ...t e e e e e e e e e e 76
9.6 UNIt SUMMAIY ...ttt e e e s e e e s 76

PraCtiCE PrODIBMS. et e et e e e e e e e e e e e e e e et eeennanaeaes 77

Practical QUESHIONS. ..o it e e e e e e e e e ee e e as 77
Unit 10: Hashing TEChNIQUES ...t e 77
COUrSE ODJECHIVES ...ttt e e e sbe e e s aareee e 77
107010 £TC T @ U oo o =T P 78
OB 0 R [o T [T) o S 78
10.1 Hash FUNCHONS.oooiiiiiiiiee e 78
Properties of a Good Hash FUNCHONccooiiiiiiii e 79
Examples of Hash FUNCLONSooviviiiiii s 79
10.2 Collisions iN HASHING ... e ae e 80
TYPES OF COllISIONS. ...t e e e e et e e e e e e e e e e e e e e e annes 80
Collision Resolution TEChNIQUES.eiiiieeiiiieie e e e e 80

1. OPEN AQArESSING ..ottt 80

FZ O £ 1 {11 T TR USSP 81

3. RENASNING. ..ot 81
Example: ResoIVING COllISIONS.......c.cciiiiiiiiiiee ettt e e e e a e e e 81
10.3 Analysis of Search Operationsc.c..coiiiiiiiiiii i 81
LRGN\ 1= g (o= TR 82
Practical Considerationsc.ooi i 82
T0.4 UNIt SUMMAIY ...ttt e e et e e e e e e et e e e e e e e e e nneeeeaaeeesannrneeeeeens 82
Practice Problems....... ... et e e e e e e e as 83
QUUIZ oottt ettt et e et e e e et et e e e et b—ee e e baeeeaatteee e e taeeeaanreeeeantaeaeaaraeeeeanraeaeans 83
Practical QUESHIONS. ..o ettt e et e e e e e e e e e eae s 83
0T L 84
Unit 11: Graph AIGOrthmS.......c.coiiiceiire e s e e e s sme e e e s s s smn e e e e ee s e nmnnes 84
(070101 Y@ o] 1=Tox 1177 SN 85
COUISE OULCOMES. ...ttt ettt e e e e e et e et e e e e e e e nbe bt e e e e e e e aannbeeeeeeeeeaannnneeas 85
T1.0 INEFOAUCTION ...t e e e e et e e e e e e e e e e e e e e e sanneneeeaeens 85
11.1 Graph RePreSeNntations............uuuiiiiiiiiiiiiiiieeeeeeee e 85
e 0T 0] (=SS OPURRER 86
11.2 Graph Traversal Techniques: BFS and DFS...........cooiiiiiiee e 87
Breadth-First S€arch (BFS)cooiiiiiii e 87
Depth-First SEArch (DFS)ccoiiiiiiiiiii et e e e e e ae e 87
11.3 Minimum Spanning Trees (MST): Prim’s and Kruskal’'s Algorithmsccccveee.... 88
Prim’s AlQOItNM ... 88
Kruskal's AlGOITNIMcoi it e e e e e e eee s 88
11.4 Single Source Shortest Paths: Dijkstra’s Algorithm ..o 88
D= 0]][RR 89
11.5 Dynamic Programming in GraphsS.........cuueioiiiieiiie e 89
T1.6 UNIE SUMMIEIY ...ttt et e e et e e e nb e e e enbee e e nnees 90

(g = Toa (oS3l d (0] 0] [T 012 1= 90

Practical QUESHIONS.coi e s e e e e e e e e e e e e ae s 90
Unit 12: Algorithmic Design Techniquesccccciviiieimnine e 91
COUISE ODJECHIVES ...ooiitiiie ittt ettt e sttt e e st e e e snbeee e sbeeeeesnreeeeans 91
COUISE OULICOMES......eiiiiiiiie ettt et e e e et e e e ea et e e ettt e e e snteeeeesmteeeeeasbeeeeanaeeeeanneeeeenns 91
T2.0 INTFOAUCTION ...ttt et e e e s et e e e e e e snnrnaeeaee s 91
12.1 Greedy AlGOItNMS e e e e e e e e e e aaaaaaaaaaaaaaaaeaaeeeaaeaaans 92
KEY CharaCteriStiCS:uuuiiiiiiiiiiiiiteeeeeeee e 92
Examples of Greedy AlGOrithmS:ooiiiiii e 92

LA 11 To (== T g To EL @) o U =Y 93
NG] (=] o1 PR PSPPSR 93
Examples of Divide-and-Conquer Algorithms:cccooiiiiiiiiii e 93
Advantages and ApPlICAtIONS:coiiiiii e 94

12.3 DYNamiC Programimingccccccoooeeeieeeniieiiieieieieteeeaeeeeeeeeeeeeeeeeeeeeeeesaaaaaaaaaaaaaaaeeeaeeeeseseesnas 94
NGO =T = Tt (=T] o= 94

Steps to Design @ DP SOIUION: ... 94
Examples of Dynamic Programming:oooiiieiiiiiiie et 95

12,4 UNIE SUMMAIY ...ttt e e e e b e e et e e e e bt e e e e anees 96
PractiCe Problems.o e et e e e e e e e e e e e e e eaees 96
QUIZ e e e et e e e e e b et e e abaeeeaat—eeeeabaeeeaarreeeeabeeeeaaraeeeeaaraeaean 97
Practical QUESHIONS.ci et e e e e e e e e e e s et e e e e e e eenrraneeae s 97
1o T L 98
Unit 13: Tractability and Computability..........ccccciiiiiciicimiiiisccccecrre e e 99
070 TU | £ T @ o] =T o3 1Y SRR 99
1070 TU] £TC I @ W) (oo 3 =1 T SRR 99

R T 0 g1 o T [T oY o S 99
13.1 Computability of AlGOMtNMScooiiiii e 100
NGV 07 0] g To7=T o) - TP 100
Example: The Halting Problemcooo e 100

13.2 Computability Classes: P, NP, NP-complete, NP-hard............ccccccoovviiiiieee e, 101
13.2.1 Class P (Polynomial Time)ccooiiiiiiiiiicc e e e e e 101

13.2.2 Class NP (Nondeterministic Polynomial Time)cccoeiiiiiiiiiiieeeeeee 101

13.2.3 NP-complete Problems ... e e 101

13.2.4 NP-hard Problems ...t e e e ee e e e e 102
Diagram: Relationship Between P, NP, NP-complete, and NP-hard....................ccc..... 102

13.3 UNIt SUMMIAIY ...t e e e 102
PractiCe Problems.ttt e e e e e e e e eeeees 102
QUUIZ ..ottt ettt e ettt aate ettt e e te e e tee e et teeanteeanteeanteeeneeenneeenneeans 103
Practical QUESTIONS......cooi i e e 103
Unit 14: Advanced Algorithmic TEChNIQUESc e 104

CoUrSE ODJECHVES ...coiiiiiieiiiiei ettt e e e et e e e e e e e e eaaeeeaans 104

(070 1U] £-1= N @ 101 {oT0] o 1= 1= 104

T4.0 INTFOAUCTION ...ttt e e e e et e e e e e s b reeee s 104
14.1 Basics of BaCKtraCking............ooiiiiiiiiii e 105
SV O o] [o7=T o) = J PP 105
Example: N-Queens Problem ... 105
14.2 Branch-and-Bound MethodolOgycueiiiiiiiiiiiiii e 107
NG T 07 o] g To=To) - TSP 107
Y Y o] o] [1er= 1 11o] o - TSRS UPURPOTRRR 108
Example: Knapsack Problem.............oo e 108
14.3 Approximation AlQOrithms...........oooviiiiiii i 108
KBY CONCEPLS ...ttt ettt e et e e e e et e e e e s e e b e e e e e e e seabaaeeeeeeaeennenees 108
APPHCALIONS .o ——————— 108
[= L] o] L = 4 (Y 001 =Y RN 108
14.4 Randomized AIGOMTNMS.oouiiiiii e e 109
NGV 07 o] g To7=To) - T PP PP 109
Example: Randomized QUICK SOrt..........coiiiiiiiiiii e 109
T4.5 UNIt SUMMAIY ...ttt e e e e e s e e e e e e e s nnte e e e e e e e snstaaeeaaeesansnneeeaens 110
Practice ProbIEMS..........oeiii e 110
L 2SS 110

Module 1

Unit 1: Basics of Algorithms

Course Objectives

e To understand the fundamental principles of algorithms.

e To gain knowledge of problem-solving techniques and algorithmic
classifications.

e To bridge theoretical concepts with practical applications.

Course OQutcomes

e Analyze and design algorithms for problem-solving.
e Classify algorithms based on different criteria.
e Apply algorithmic principles to real-world scenarios.

1.0 Introduction

Algorithms form the backbone of computer science and are pivotal in
solving computational problems efficiently. They provide a systematic
approach to problem-solving by outlining a sequence of steps to achieve a
desired outcome.

By understanding the basic principles of algorithms, you can design
solutions that are not only effective but also optimized for performance.
This unit introduces the foundational concepts of algorithms, aiming to
bridge theory with practical implementation.

In this unit, we will explore:

e Fundamental techniques for problem-solving.
e How algorithms are classified based on purpose, paradigm, and
performance.

1.1 Fundamentals of Problem Solving

Problem-solving is Gtie of the core skills in algorithm design, which involves
a systematic approach to tackle computational challenges. The following
steps outline this process in detail:

1. Understanding the Problem:
o Clearly define the problem, ensuring the scope and
requirements are well-understood.
o Identify inputs, outputs, constraints, and assumptions to set a
clear boundary for the solution.

2. Detailed Explanation: The first and most critical step is to
understand the problem. If misinterpreted the problem can lead to
inefficient or incorrect solutions. For example, while solving a sorting
problem, it's essential to know whether the input is always a list of
numbers or if it might include strings. Additionally, understanding
constraints ensures that the solution remains efficient even for edge
cases.

3. Designing a Solution:
o Decompose the problem into manageable sub-problems or
tasks.
o Develop a strategy or algorithm to solve each sub-problem,
aligning them to form the overall solution.

4. Detailed Explanation: Designing a solution involves creativity and
logical thinking. For instance, in designing a search algorithm, one
might compare the straightforward linear search to the efficient binary
search for sorted data. Decomposing problems often reveals simpler
methods or reusable patterns, like recursion or iteration.

. Developing an Algorithm:

o Translate the solution strategy into a precise, step-by-step
process that can be implemented programmatically.

o Consider both correctness and efficiency during the design
phase.

. Detailed Explanation: Algorithms are blueprints for solving
problems. A well-designed algorithm not only solves the problem but
also ensures optimal use of resources. For instance, a sorting
algorithm like Merge Sort achieves better performance by using the
divide-and-conquer paradigm.

. Implementation:

o Convert the algorithm into a functioning program using a
programming language.

o Adhere to best coding practices to ensure readability and
maintainability.

. Testing and Optimization:

o Validate the algorithm with diverse test cases, which include
edge cases and extreme inputs.

o Optimize the algorithm for performance by reducing time and
space complexity where possible.

. Detailed Explanation: Testing ensures that the algorithm handles all
inputs correctly. Optimization, on the other hand, makes the solution
scalable. For instance, reducing time complexity from O(n2) to
O(nlogn) makes a remarkable difference for large datasets.

Example: Finding the Largest Number in an Array

This example demonstrates a simple yet effective algorithm to identify the
largest number in a given array. The steps ensure correctness and

efficiency:
Algorithm:

1. Initialize a variable maximum with the 1st element from the array.
2. Traverse the array from the 2"d element onwards:
o If the current element is greater than maximum, update
maximum to this element.
3. Return or print the value of maximum .

Key Considerations:

e Edge Cases: Handle scenarios such as an empty array by returning

an error or default value.
e Duplicates: If duplicate maximum values exist, this algorithm still

returns the correct result.
Program (C++):

Finding the largest number in an array
#include <iostream>
#include <vector>

int main() {
std::vector<int> arr = {3, 5, 7, 2, 8};

if (arr.empty()) {
std::cout << "Array is empty." << std::endl;

}

else {

}

int max_value = arr[0];
for (int num : arr) {
if (num > max_value) {
max_value = num,;
}
}

std::cout << "Largest number is: " << max_value << std::endl;

return O;

}

1.2 Classification of Algorithms

Algorithms can be classified based on various criteria, each providing
understanding of their structure, purpose, and application. Below are the
primary classifications:

1.2.

1 Based on Purpose

Sorting Algorithms: Organize data in a specific order, such as
ascending or descending. For example:

o Quick Sort: Efficient for large datasets.

o Merge Sort: Stable sorting algorithm with consistent

performance.
Searching Algorithms: Locate a specific element within a dataset.
Examples include:

o Binary Search: Ideal for sorted arrays with logarithmic

complexity.

o Linear Search: Simplistic but works for unsorted data.
Optimization Algorithms: Solve problems by optimizing a specific
criterion, such as cost or efficiency. Examples:

o Dynamic Programming for resource allocation.

o Greedy Algorithms for route optimization.

Detailed Explanation: Sorting algorithms are essential for organizing and
processing data efficiently. Searching algorithms, instead, reduce the time
needed to locate specific elements. Optimization algorithms focus on
minimizing or maximizing a particular attribute, such as cost or speed.

1.2.2 Based on Design Paradigm

e Divide and Conquer:
o Divide the problem into smaller, manageable parts, solve them
recursively, and combine results.
o Example: Merge Sort efficiently sorts arrays by dividing them
into halves.

e Dynamic Programming:
o Stores results of overlapping sub-problems to avoid redundant
computations.
o Example: Calculating Fibonacci numbers efficiently.

e Greedy Algorithms:
o Focus on making locally optimal choices at each step to
achieve a globally optimal solution.
o Example: Dijkstra's Algorithm for shortest path problems.

1.2.3 Based on Performance

e Time Complexity: Measures how the running time of the algorithm
grows with input size.

e Space Complexity: Assesses the memory required by the algorithm
during execution.

By getting the insights of these classifications, you can select and design
algorithms tailored to specific problems. This knowledge is especially useful
in real-world applications, where trade-offs between time and space
complexities often dictate algorithm choices.

Example: Classification of Sorting Algorithms

The table below provides a quick comparison of common sorting algorithms
based on their design paradigm and performance:

Algorithm Design Paradigm Time Complexity
Bubble Sort lterative O(n"2)
Quick Sort Divide and Conquer O(n log n)
Merge Sort Divide and Conquer O(n log n)

Significance:

e Bubble Sort: Simple to implement but inefficient for large datasets.

e Quick Sort: Efficient and widely used, though performance depends
on pivot selection.

e Merge Sort: Guarantees stable sorting, making it suitable for
datasets where order preservation matters.

1.3 Unit Summary

In this unit, we introduced the basics of algorithms, covering fundamental
problem-solving techniques and classifications. We discussed how to
approach problem-solving systematically, the importance of algorithm
design, and how algorithms are categorized by purpose, paradigm, and
performance. With this foundation, you can now delve deeper into specific
algorithms and their applications.

Practice Problems

1. Write an algorithm to reverse an array.
2. Classify the following algorithms based on their paradigm:
o Binary Search
o Prim's Algorithm
o Bellman-Ford Algorithm
3. Implement a C++ program to find the smallest number in an array.

Quiz

1. What are the steps involved in problem-solving?

Practical Questions

1. Implement Merge Sort in your preferred programming language.
2. Analyze the time complexity of Bubble Sort and suggest an
optimization.

Unit 2: Algorithm Analysis

Course Objectives

e To understand the methodologies for analyzing algorithm efficiency.
e To learn asymptotic analysis techniques and their applications.
e To evaluate and compare iterative and recursive algorithms.

Course OQutcomes

e Apply asymptotic analysis for evaluating algorithm performance.
e Perform mathematical and empirical analysis of algorithms.
e Develop efficient algorithms using analytical insights.

2.0 Introduction

Algorithm analysis provides the tools to evaluate the efficiency and
effectiveness of algorithms. It helps in understanding the resource
requirements (time and space) and guides in selecting the most
appropriate algorithm for a given problem.

This unit covers:

e Basics of algorithm analysis.
e Asymptotic analysis and its importance.
e Mathematical and empirical methods for evaluating algorithms.

2.1 Basics of Algorithm Analysis

Algorithm analysis focuses on determining the computational resources
required to solve a problem. The key metrics used include:

Time Complexity

e Definition: The amount of time an algorithm takes to complete as a
function of input size.

e Example: In a linear search, the time complexity is O(n) because the
number of comparisons grows linearly with the array size.

Space Complexity

e Definition: The amount of memory an algorithm uses during its
execution.

e Example: A recursive function requires additional stack space,
contributing to its space complexity.

Key Considerations

1. Input Size: Larger inputs typically require more time and space.
2. Worst, Average, and Best Cases:
o Worst Case: Maximum time taken (e.g., searching for a missing
element in a list).
o Average Case: Expected time for random inputs.
o Best Case: Minimum time taken (e.g., finding the first element
in a list).

2.2 Asymptotic Analysis

Asymptotic analysis evaluates algorithm efficiency by analyzing its behavior
for large input sizes. It abstracts away constants and lower-order terms,
focusing on growth rates.

Common Notations

1. Big O (O):
o Represents the upper bound of time complexity.
o Example: Binary search has a time complexity of O(log n).

2. Omega (Q):
o Represents the lower bound of time complexity.
o Example: The best-case time complexity of linear search is

Q(1).

3. Theta (©):
o Represents the exact bound of time complexity.

o Example: Merge Sort has a time complexity of ©(n log n).

Importance

e Helps compare algorithms independently of hardware or
programming language.
e Provides insights into scalability and performance.

Example: Fime Complexity of Nested Loops
for (inti=0;i<n;++i){
for (intj = 0; j < n; +4j) {
cout <<i<<""<<j<<end

}
}

e Analysis: Each loop runs n times, resulting in a time complexity of
O(n"2).

2.3 Mathematical Analysis of Iterative
and Recursive Algorithms

Iterative Algorithms

e Use loops to repeat operations.
e Example: Finding the sum of all elements in an array.

Analysis:

1. ldentify the number of loop iterations.
2. Determine the time complexity based on the operations within the
loop.

Example:

sum =0
for(i=0;i<n;i++){
sum += arrfi]

}
e Time Complexity: O(n).
Recursive Algorithms

e Solve problems by breaking them into smaller sub-problems and
solving them recursively.
e Example: Calculating Fibonacci numbers.

Analysis:

1. Formulate a recurrence relation.
2. Solve the recurrence to determine time complexity.

Example:

fibonacci(n){

if (n<=1):

return n;
return fibonacci(n-1) + fibonacci(n-2);

}

e Recurrence Relation: T(n) = T(n-1) + T(n-2) + O(1).
e Time Complexity: Exponential, O(2*n).

2.4 Empirical Analysis of Algorithms

Empirical analysis involves measuring algorithm performance through
experimentation rather than theoretical evaluation.

Steps:

1. Implement the Algorithm: Code the algorithm in a programming
language.

2. Set Up Test Cases: Include edge cases, average cases, and worst
cases.

3. Measure Performance: Use timing functions or profiling tools to
evaluate execution time and memory usage.

Advantages:

e Provides real-world performance insights.
e Helps identify implementation-specific bottlenecks.

Example: Comparing Sorting Algorithms

Test @rting algorithms like Merge Sort, Bubble Sort, and Quick Sort on
large datasets to measure execution time and memory consumption.

2.5 Unit Summary

In this unit, we discussed the importance of algorithm analysis, focusing on
time and space complexity, asymptotic notations, and methods for
analyzing iterative and recursive algorithms. Additionally, empirical analysis
was introduced as a practical approach to evaluating algorithm
performance.

Practice Problems

1. Derive the time complexity of the following code snippet:
for (inti=0;i<n;i++)
for (intj=0;j<i; j++X
print(i, j)
}
}

2. Analyze the space complexity of a recursive function for calculating
factorial.
3. Compare the time complexity of Bubble Sort and Quick Sort.

Quiz

1. Define time complexity and space complexity.
2. Explain the difference between worst-case and average-case time
complexity.

Practical Questions

1. Implement and analyze the performance of a recursive Fibonacci
sequence generator.

2. Compare the execution time of Merge Sort and Insertion Sort for
large datasets.

Unit 3: Models of Computation

Course Objectives

e To understand the theoretical models of computation.

e To explore the RAM model and Turing machines as foundational
computational paradigms.

e To analyze the applicability of these models in algorithm design and
complexity theory.

Course Outcomes

e Explain the role of computational models in algorithm analysis.

e Differentiate between practical and theoretical models of
computation.

e Apply Turing machines and RAM models to solve computational
problems.

3.0 Introduction

Models of computation form the theoretical basis for understanding and
analyzing algorithms. They abstract the capabilities and limitations of
computational devices, offering a framework to study problems
independent of specific hardware or software.

This unit introduces:

e The RAM model as a practical representation of computation.
e The Turing Machine as a theoretical framework for defining
computability.

3.1 RAM Model

The Random Access Machine (RAM) model is a simplified abstraction of a
real-world computer. It is commonly used for algorithm analysis as it closely
mimics the behavior of modern computing systems.

Features of the RAM Model

1. Sequential Execution: Instructions are executed one after another.

2. Random Access Memory: Any memory cell can be accessed in
constant time.

3. Instruction Set: Supports basic operations such as addition,
subtraction, comparison, and memory access.

4. Unit Cost: Assumes each operation, including memory access, takes
one time unit.

Importance of the RAM Model

e Facilitates @ design and analysis of algorithms without concern for
hardware specifics.

e Serves as the foundation for measuring time complexity in Big O
notation.

Example: Time Complexity in the RAM Model

Consider the problem of summing up n numbers of an array:

sum = 0;
for (inti=0;i<n;i++)
sum += arrfi];

}

¢ Analysis: The loop executes n iterations, and each iteration involves
a memory access and addition. Thus, the time complexity is O(n).

3.2 Turing Machine

The Turing Machine is a theoretical construct introduced by Alan Turing to
define the concept of computability. It is a impactful model that can
simulate any algorithm.

Components of a Turing Machine

1. Tape:

o Infinite in length and divided into cells.

o Each cell holds a symbol from a finite alphabet.
2. Head:

o Reads and writes symbols on the tape.

o Moves left or right based on the current state and input symbol.
3. Finite State Control:

o Directs the machine's operations based on its current state and

tape symbol.

Working of a Turing Machine

1. Initialization: The input is written on the tape, and the head starts at
a designated position.

2. Transition: The machine transitions between states based on the
current state and tape symbol.

3. Halting: The machine stops when it reaches a designated halting
state.

Example: Turing Machine for Unary Addition
To add two unary numbers (e.g., 111 + 11 =11111):

1. Scan to the rightmost 1 of the first number.
2. Replace the next blank cell with a 1.
3. Repeat until the second number is fully processed.

Significance of Turing Machines

e Provides a formal definition of what it means for a function to be
computable.

e Forms the basis for complexity classes such as P and NP.

e Demonstrates that some problems are undecidable (e.g., the Halting
Problem).

3.3 Unit Summary

In this unit, we explored two fundamental models of computation:

e The RAM Model, which offers a practical framework for analyzing
algorithm efficiency.

e The Turing Machine, which provides a theoretical foundation for
understanding computability and complexity.

These models are essential for narrowing tite gap between theoretical
computer science and real-world algorithm design.

Practice Problems

1. Write a RAM model algorithm to find the maximum value in an array
and analyze its time complexity.

2. Design a Turing Machine to recognize strings of the form 8+n14n
(equal number of Os followed by 1s).

Quiz

1. What is the significance of the RAM model in algorithm analysis?
2. Describe the main components of a Turing Machine.
3. Explain the Halting Problem and its implications.

Practical Questions

1. Compare the RAM model and Turing Machine in terms of their
applications and limitations.

2. Implement a C++ program to simulate a simple Turing Machine for
unary addition.

Module 2

Unit 4: Abstract Data Types
(ADTs)

Course Objectives

e To understand the concept of Abstract Data Types (ADTSs).

e To explore the implementation and applications of stacks, queues,
and circular queues.

e To analyze the role of ADTs in algorithm development and problem-
solving.

Course Outcomes

e Explain the importance of ADTs in data organization.

e Implement and utilize stacks, queues, and circular queues in
programming.

e Apply ADTs to solve real-world problems effectively.

4.0 Introduction

Abstract Data Types (ADTs) provide a theoretical framework for defining
and organizing data structures. ADTs describe the operations that can be
performed on data without specifying the implementation details, promoting
modularity and reusability.

This unit focuses on three fundamental ADTs:

« Stacks: A linear data structure with Last-In-First-Out (LIFO) behavior.
e Queues: A linear data structure with First-In-First-Out (FIFO)
behavior.

o Circular Queues: A variant of queues that optimizes memory usage
by reusing previously allocated space.

4.1 Stacks

Definition

A stack is a linear data structure that follows the Last-In-First-Out (LIFO)
principle. Adding and removing elements from only one end, known as the
"top" of the stack.

Operations

Push: Adds an element to the top of the stack.

Pop: Removes the top element from the stack.

Peek/Top: Returns the top element without removing it.

IsEmpty: Makes sure if the stack is empty.

IsFull: Makes sure if the stack is full (in a fixed-size implementation).

a B~ w0 b=

Applications

e Function call management (e.g., recursion).
e Expression evaluation and conversion (e.g., infix to postfix).
e Undo operations in text editors.

Example: Stack Implementation in C++

#include <iostream>
#include <vector>
#include <string>

class Stack {
private:
std::vector<int> stack; // Assuming the stack will hold integers

public:
Stack() {}

void push(int item) {
stack.push_back(item);

}

std::string pop() {
if (lis_empty()) {
int item = stack.back();
stack.pop_back();
return std::to_string(item);
} else{
return "Stack is empty";

}
}

std::string peek() {
if (lis_empty()) {
return std::to_string(stack.back());
} else {
return "Stack is empty";
}
}

bool is_empty() {
return stack.empty();

}
J#

4.2 Queues

Definition

A queue is a linear data structure that follows the First-In-First-Out (FIFO)
principle. Elements are added at the rear and removed from the front.

Operations

Enqueue: Adds an element to the rear of the queue.

Dequeue: Removes an element from the front of the queue.
Peek/Front: Returns the front element without removing it.

IsEmpty: Makes sure if the queue is empty.

IsFull: Makes sure if the queue is full (in a fixed-size implementation).

a kr b=

Applications

e Process scheduling in operating systems.
e Managing requests in web servers.
e Breadth-First Search (BFS) in graph traversal.

Example: Queue Implementation in C++

#include <iostream>
#include <vector>
#include <string>

class Queue {
private:
std::vector<int> queue; // Assuming the queue will hold integers

public:
Queue() {}

void enqueue(int item) {
queue.push_back(item);

}

std::string dequeue() {
if (Nis_empty()) {
int item = queue.front();
queue.erase(queue.begin());
return std::to_string(item);
}else{
return "Queue is empty";
}
}

std::string peek() {
if (Nis_empty()) {
return std::to_string(queue.front());
} else{
return "Queue is empty";
}
}

bool is_empty() {
return queue.empty();
Y
3

4.3 Circular Queues

Definition

A circular queue is a linear data structure where the last position is
connected to the first, forming a circle. This design eliminates the unused
space issue in linear queues.

Operations

Enqueue: Adds an element to the rear if space is available.
Dequeue: Removes an element from the front.
Peek/Front: Returns the front element without removing it.
IsEmpty: Makes sure if the queue is empty.

IsFull: Makes sure if the queue is full.

o~ Dd -

Advantages of Circular Queues

e Efficient utilization of memory by reusing freed space.
e Prevents the "queue overflow" issue in a fixed-size queue.

Example: Circular Queue Implementation in C++

#include <iostream>
#include <vector>

class CircularQueue {
private:
int size;
std::vector<int> queue;
int front;
int rear;

public:
CircularQueue(int size) : size(size), front(-1), rear(-1) {
queue.resize(size);

}

std::string enqueue(int item) {
if ((rear + 1) % size == front) {
return "Queue is full";
} else if (is_empty()) {
front = rear = 0;

} else {
rear = (rear + 1) % size;
}
queue[rear] = item;
return "";

}

std::string dequeue() {
if (is_empty()) {
return "Queue is empty";
}
int temp = queue]front];
if (front == rear) {

front = rear = -1;

} else {

front = (front + 1) % size;
}
return std::to_string(temp);

}

bool is_empty() {
return front == -1;

}

4.4 Unit Summary

In this unit, we covered three essential Abstract Data Types:

e Stacks: A LIFO structure used in recursion, expression evaluation,
and undo operations.

e Queues: A FIFO structure applied in scheduling, request handling,
and BFS.

o Circular Queues: An optimized queue variant that efficiently utilizes
memory.

By mastering these ADTs, you can design robust algorithms for a wide
range of applications.

Practice Problems

1. Implement a stack using a linked list and perform push, pop, and

peek operations.
2. Write a program to simulate a queue using two stacks.

3. Create a circular queue for managing a print job queue.

Quiz

1. What is the key difference between a queue and a stack?
2. Why is a circular queue more memory-efficient than a linear queue?

Practical Questions

1. Analyze the time complexity of operations in a stack and queue.
2. Design a C++ program to evaluate a postfix expression using a stack.

Unit 5: Implementations and
Advanced Structures

Course Objectives

e To explore advanced implementations of stacks and queues using
each other.

e To understand the concepts of priority queues and heaps.

e To analyze the applications and significance of these data structures
in real-world scenarios.

Course Outcomes

e Implement stacks using queues and queues using stacks.

e Understand and apply priority queues and heaps in problem-solving.

e Evaluate the performance and use cases of advanced data
structures.

5.0 Introduction

This unit dives deep into advanced implementations of basic data
structures and explores specialized data structures like priority queues and
heaps. These structures extend the functionality of traditional stacks and
queues, offering new ways to solve complex computational problems
efficiently.

5.1 Implementation of Stacks Using
Queues

Concept

@acks and queues are fundamental data structures with distinct
operational principles. Implementing a stack using @e or more queues
requires manipulating queue operations to emulate the Last-In-First-Out
(LIFO) behavior of a stack.

Methods

There are two primary approaches:

1. Using Two Queues:
o Push operation is straightforward.
o Pop operation involves transferring elements between queues
to maintain the stack order.

2. Using a Single Queue:
o Push involves adding elements and rotating the queue.
o Pop is straightforward by removing from the front.

Example: Stack Using Two Queues

#include <queue>
#include <iostream>
#include <string>

class StackUsingQueues {
private:
std::queue<int> q1;
std::queue<int> g2;

public:

StackUsingQueues() {}

void push(int item) {
q1.push(item);
Y

std::string pop() {

if (q1.empty()) {
return "Stack is empty";

}

while (q1.size() > 1) {
g2.push(qg1.front());
q1.pop();

}

int popped_item = q1.front();

q1.pop();

std::swap(q1, g2);

return std::to_string(popped_item);

5.2 Implementation of Queues Using
Stacks

Concept

Implementing a queue using stacks involves manipulating stack operations
to mimic the First-In-First-Out (FIFO) behavior of a queue.

Methods

1. Using Two Stacks:
o Enqueue operation pushes elements to the first stack.
o Dequeue operation transfers elements to the second stack to
reverse the order.

2. @ing a Single Stack:
o Enqueue and dequeue operations involve recursive calls to
achieve FIFO order.

Example: Queue Using Two Stacks

#include <iostream>
#include <stack>
#include <string>

class QueueUsingStacks {
private:
std::stack<int> stack1;
std::stack<int> stack2;

public:
void enqueue(int item) {
stack1.push(item);

}

std::string dequeue() {
if (stack1.empty() && stack2.empty()) {
return "Queue is empty";
}
if (stack2.empty()) {
while (!stack1.empty()) {
stack2.push(stack1.top());
stack1.pop();

}

}
int front = stack2.top();

stack2.pop();
return std::to_string(front);

5.3 Priority Queues and Heaps

Priority Queues

A priority queue @. a data structure where each element is associated with
a priority. Elements with higher priorities are dequeued before those with
lower priorities.

Operations

1. Insert: Add an elﬁent with a priority.
2. Delete: Remove element with the highest priority.

Heaps

A heap is a specialized tree-based @ta structure that satisfies the heap
property:

o Max Heap: Parent nodes are greater than or equal to their children.
e Min Heap: Parent nodes are less than or equal to their children.

Applications

e Efficiently implement priority queues.
e Solve problems like finding the k-largest elements or merging sorted
arrays.

Example: Min Heap Implementation in C++

#include <iostream>
#include <queue>

int main() {
std::priority_queue<int, std::vector<int>, std::greater<int>> heap;
heap.push(10);
heap.push(5);
heap.push(20);
std::cout << heap.top() << std::endl; // Output: 5
return O;

5.4 Unit Summary

In this unit, we explored:

o Stacks Using Queues: Implemented using single or multiple queues.

¢ Queues Using Stacks: Implemented using single or multiple stacks.

o Priority Queues and Heaps: Specialized data structures for handling
prioritized data efficiently.

These advanced implementations and data structures are instrumental in
solving complex computational problems across various domains.

Practice Problems

1. Implement a stack using a single queue and perform push and pop

operations.

Write a program @ implement a priority queue using a max heap.

3. Compare the performance of a queue implemented using stacks
versus a regular queue.

Quiz

1. How does a heap differ from a binary search tree?
2. What is the key advantage of using two stacks to implement a
queue?

N

Practical Questions

1. Design a C++ program to find the k-largest elements in an array
using a heap.

2. Analyze the time complexity of enqueue and dequeue operations in a
gueue implemented using two stacks.

Unit 6: Linked Lists

Course Objectives

e To understand the structure and types of linked lists.

e To learn how to perform basic operations such as search and update
in linked lists.

e To analyze the applications of linked lists in computer science and
programming.

Course Outcomes

e |dentify and implement ﬁferent types of linked lists.
e Perform search and update operations on linked lists effectively.
e Apply linked list concepts to solve real-world problems.

6.0 Introduction

Linked lists are dynamic data structures that consist of nodes, where each
node contains data and afreference to the next node. Unlike arrays, linked
lists allow efficient insertion and deletion operations without the need to
resize or reorganize memory. They are fundamental to understanding fore
advanced data structures such as stacks, queues, and graphs.

In this unit, we will explore:

° @e different types of linked lists.
e How to perform search and update operations on linked lists.

6.1 Types of Linked Lists

Linked lists come in various forms, each suited for different scenarios
based on their structure and functionality.

6.1.1 Singly Linked List

e Structure: @ch node contains data and a pointer to the next node.

o Advantages: Simple to implement and efficient for operations like
traversal and insertion.

o Limitations: Cannot traverse backward.

Example
#include <iostream>

class Node {
public:
int data;
Node* next;

Node(int data) {
this->data = data;
this->next = nullptr;

Y

3

class SinglyLinkedList {
private:
Node* head;

public:
SinglyLinkedList() {
this->head = nullptr;

}

void append(int data) {
Node* newNode = new Node(data);

if ('this->head) {
this->head = newNode;
return;

}

Node* current = this->head;

while (current->next) {
current = current->next;

}

current->next = newNode;

Y
3

int main() {
SinglyLinkedList sll;
sll.append(10);
sll.append(20);
return O;

6.1.2 Doubly Linked List

e Structure: Each node contains data, gaointer to the next node, and
a pointer to the previous node.

o Advantages: Can be traversed in both directions.

o Limitations: Requires more memory due to the additional pointer.

Example

#include <iostream>

class Node {
public:
int data;
Node* next;

Node(int data) {
this->data = data;
this->next = nullptr;

Y

3

class SinglyLinkedList {
private:
Node* head;

public:
SinglyLinkedList() {
this->head = nullptr;

}

void append(int data) {
Node* newNode = new Node(data);
if (1this->head) {
this->head = newNode;
return;
}
Node* current = this->head;
while (current->next) {
current = current->next;

}

current->next = newNode;

class Node2 {
public:

%

int data;
Node2* next;
Node2* prev;

Node2(int data) {
this->data = data;
this->next = nullptr;
this->prev = nullptr;

}

class DoublyLinkedList {
private:

Node2* head;

public:
DoublyLinkedList() {
this->head = nullptr;
}

void append(int data) {

Node2* newNode = new Node2(data);

if ('this->head) {
this->head = newNode;
return;

}

Node2* current = this->head;

while (current->next) {
current = current->next;

}

current->next = newNode;

newNode->prev = current;

6.1.3 Circular Linked List

o Structure: The last node points back to the first node, forming a
circle.

o Advantages: Useful for applications requiring continuous traversal,
such as buffering.

o Limitations: Complex implementation.

Example
#include <iostream>

class Node {
public:
int data;
Node* next;

Node(int data) {
this->data = data;
this->next = nullptr;

Y

3

class CircularLinkedList {
private:
Node* head;

public:
CircularLinkedList() {
this->head = nullptr;

}

void append(int data) {
Node* new_node = new Node(data);
if (Ithis->head) {
this->head = new_node;
new_node->next = this->head;
return;

}

Node* current = this->head;
while (current->next != this->head) {
current = current->next;

}

current->next = new_node;
new_node->next = this->head;

6.2 Search and Update Operations

Searching in a Linked List

To search for an element in a linked list, traverse the list and compare each
node's data with the target value.

Example

bool search(Node* linked_list, int target) {
Node* current = linked_list;
while (current != nullptr) {
if (current->data == target) {
return true;

}

current = current->next;

}

return false;

Updating a Node in a Linked List

To update a node, traverse the list until the desired node is found, and
modify its data.

Example
Node* update(Node* linked_list, int target, int new_value) {
Node* current = linked_list;
while (current) {
if (current->data == target) {
current->data = new_value;
return linked_list;

}

current = current->next;

}

return linked_list;

}

6.3 Unit Summary

In this unit, we covered:

o Types of Linked Lists: Singly, Doubly, and Circular Linked Lists.
e Search and Update Operations: Traversal-based techniques for
modifying and retrieving data in linked lists.

Linked lists form the foundation for advanced data structures and are
widely used in applications such as memory management and graph
representations.

Practice Problems

1. Implement a function to delete a node from a singly linked list.

2. Write a program to reverse a doubly linked list.

3. Create a circular linked list and implement a function to count its
nodes.

Quiz

1. What is the key difference between a singly and a doubly linked list?
2. In which scenarios are circular linked lists preferred?

Practical Questions

1. Implement a linked list in your preferred programming language and
demonstrate search and update operations.

2. Analyze the time complexity of searching in a doubly linked list versus
a singly linked list.

Unit 7: Trees

Course Objectives

e To understand the fundamental concepts of tree data structures.
e To explore different types of trees and their applications.
e To learn traversal techniques and analyze balanced trees.

Course Outcomes

e Implement and utilize tree structures in various programming
contexts.

e Perform efficient operations using binary search trees, AVL trees, and
other advanced trees.

e Apply tree traversal techniques to solve real-world problems.

7.0 Introduction

Trees are hierarchical data structures consisting of nodes connected by
(%ges, with one node designated as the root. Unlike linear data structures,
trees allow for efficient representation of hierarchical relationships. They
are foundational in areas such as databases, compilers, and artificial
intelligence.

In this unit, we will cover:

e Basic concepts and types of trees.
e Traversal techniques to navigate trees.
e Specialized trees such as AVL, Red-Black, and B-Trees.

7.1 Binary Trees

.@oinary tree is a tree where each node has at most two children, merred
to as the left and right child.

Properties:

e The height of a binary tree with n nodes is at least [log2(n+1)].
e In a full binary tree, all levels except possibly the last are completely
filled.

Example:

10

I\

5 15
I\ 1\
3 712 18

7.2 Tree Traversals

Tree traversal refers to visiting all nodes in a tree in a specific order.
Traversal methods include:

7.2.1 Inorder Traversal

e Visit the left subtree, the root, and then the right subtree.
o Usage: Retrieves nodes in sorted order for binary search trees.

Example (C++):
void inorder_traversal(Node* node) {
if (node) {
inorder_traversal(node->left);
cout << node->data << endl;
inorder_traversal(node->right);

}
}

7.2.2 Preorder Traversal

e Visit the root, the left subtree, and then the right subtree.
o Usage: Used for creating tree copies.

7.2.3 Postorder Traversal

e Visit the left subtree, the right subtree, and then the root.
e Usage: Commonly used for deleting trees.

7.2.4 Level Order Traversal

e Visits nodes level by level.
o Usage: Suitable for breadth-first search (BFS) applications.

7.3 Binary Search Trees (BSTs)

Binary search trees ensure efficient searching, insertion, and deletion
operations by maintaining an order property:

e All left descendants are less than the root.
e All right descendants are greater than the root.

Example:

/\

3 10
I\
16 14
AN
4 713

Operations:

e Search: O(h), mere h is the height of the tree.
¢ Insertion and Deletion: Similar to search but may require tree
restructuring.

7.4 AVL Trees

AVL trees are self-balancing binary search trees where the height
difference between the left and right subtrees of any node is at most one.

Rotations:

o Single Rotation: Right or left rotation to restore balance.
o Double Rotation: Combination of left-right or right-left rotations.

Example:

Insertion of a node may require:

e Right rotation for left-heavy imbalance.
e Left rotation for right-heavy imbalance.

7.5 Red-Black Trees

Red-Black mes are balanced binary search trees with the following
properties:

Nodes are either red or black.

The root is always black.

No two consecutive red nodes exist.

Every path from the root to a null node has the same number of black
nodes.

hron -~

Operations:

e Searching: O(logn)
e Insertion and Deletion: Maintain balance using rotations and color
changes.

7.6 Splay Trees

Splay trees are self-adjusting binary search trees where recently accessed
elements are moved to the root.

Advantages:

e Frequently accessed nodes are quick to reach.
e Simple implementation.

Example:

If node 20 is accessed frequently, it will be rotated to the root for faster
future access.

7.7 B-Trees

B-Trees are @If—balancing search trees optimized for systems that read
and write large blocks of data.

Properties:

1. Each node can have multiple keys and children.
2. Nodes are kept partially filled to maintain balance.

Applications:

e Databases and file systems.

7.8 Unit Summary

In this unit, we explored:

e The structure and traversal of binary trees.

e Balanced trees such as AVL, Red-Black, and Splay trees.

e Advanced tree structures like B-Trees for efficient storage and
retrieval.

Practice Problems

1. Write a program to perform all four types of tree traversals on a
binary tree.

2. Implement insertion and deletion operations in a binary search tree.

Create an AVL tree and demonstrate rotations for balancing.

4. Construct a Red-Black tree for a given set of keys.

w

Quiz

1. What are the key differences between AVL trees and Red-Black
trees?
2. In what scenarios are B-Trees preferred over other tree structures?

Practical Questions

1. Design a tree structure for managing hierarchical data in a file
system.

2. Compare the efficiency of Red-Black Trees and Splay Trees for
dynamic data.

Unit 8: Disjoint Sets

Course Objectives

° 90 understand the concept and structure of disjoint sets.

e To learn the operations performed on disjoint sets and their
efficiency.

e To explore the practical applications of disjoint sets in computer
science.

Course Outcomes

e Implement and utilize the union-find data structure.

e Analyze the efficiency of disjoint set operations.

e Apply disjoint sets to solve real-world problems in networks, graphs,
and clustering.

8.0 Introduction

Disjoint sets are also known as union-find Gata structures, which are used
to represent & collection of non-overlapping sets. They support two primary
operations:

1. Union: Merges two sets into a single set.
2. Find: Determines a particular element belongs to which set.

Disjoint sets, widely used in algorithms for graph connectivity, network
design, and clustering problems. In this unit, we will explore the structure,
operations, and applications of disjoint sets.

8.1 Introduction to Disjoint Sets

Disjoint sets are a way of managing partitions of elements into groups
where each element belongs to exactly one group.

Key Concepts:

o Set Representation: Each set in Set Representation @ represented
by a unique identifier, often ﬁ%e root of a tree structure.

o Parent Pointers: Each element points to its parent, and the root
points to itself.

Example:

Set 1: {1, 2,3} — Root: 1
Set 2: {4,5} — Root: 4

Visualization:

A disjoint set can be visualized as a forest of trees:

1 4
I\ I\
2 356

8.2 Union-Find Operations

The union-find data structure supports two fundamental operations:

8.2.1 Union Operation

Combines two disjoint sets into one.

o Naive Approach: Attach one tree as a subtree of another.
o Optimized Approach: Use techniques such as union by rank to keep
the tree shallow.

Example:
Union of {1, 2, 3} and {4, 5} results in:

1
N\
234
\
5

8.2.2 Find Operation

Determines the representative (or root) of ge set to which an element
belongs.

o Path Compression: Flattens the tree structure during find operations
to make future queries faster.

Example (C++):
int find(vector<int>& parent, int x) {
if (parent[x] != x) {
parent[x] = find(parent, parent[x]); // Path compression

}

return parent[x];

}

void union_set(vector<int>& parent, vector<int>& rank, int x, int y) {
int root_x = find(parent, x);
int root_y = find(parent, y);

if (root_x !=root_y) {

if (rank[root_x] > rank[root_y]) {
parent[root_y] = root_x;

} else if (rank[root_x] < rank[root_y]) {
parent[root_x] = root_y;

} else {
parent[root_y] = root_x;
rank[root_x]++;

}

}
}

8.3 Efficiency of Union-Find Operations

The efficiency of union-find operations depends on:

1. Union by Rank: Attaches smaller trees under larger ones.
2. Path Compression: Flattens the tree structure during find
operations.

Time Complexity:

e Each operation has an mmrtized time complexity of O(a(n)), where
a(n) is the inverse Ackermann function, which grows very slowly.

Performance Comparison:

Operati Without With
on Optimization Optimization

8.4 Practical Applications

gisjoint sets are broadly used in various fields of computer science:

8.4.1 Graph Connectivity

e Kruskal’s Algorithm: Is used to find the minimum spanning tree of a
graph.
e Detects cycles in undirected graphs.

8.4.2 Network Design

e Used in clustering networks to ensure efficient connections.

8.4.3 Image Processing

e Connected component labeling in binary images.

Example: Kruskal’s Algorithm

1. Sort all edges by weight.

2. lterate through edges, adding them to the spanning tree if they don’t
form a cycle.

3. Use union-find to detect cycles efficiently.

8.5 Unit Summary

In this unit, we explored:

e The structure and operﬁ'ons of disjoint sets.
e Optimizations such as GHion by rank and path compression.

e Practical applications in graph algorithms, networks, and image
processing.

Practice Problems

1. Implement union and find operations with path compression.
2. Use disjoint sets to detect cycles in an undirected graph.
3. Implement Kruskal’s Algorithm using the union-find structure.

Quiz

1. What is the purpose of path compression in disjoint sets?
2. Explain the difference between naive union and union by rank.

Practical Questions

1. Write a program to label connected components in a binary image
using disjoint sets.

2. Analyze the impact of path compression on the efficiency of union-
find operations.

Module 3

Unit 9: Sorting Algorithms

Course Objectives

e To understand various sorting algorithms and their classifications.

e To analyze the performance of sorting techniques based on time and
space complexity.

e To explore real-world applications of sorting algorithms in data
processing and optimization.

Course Outcomes

e Implement and compare different sorting algorithms.

e Analyze and optimize sorting operations based on algorithmic
paradigms.

e Apply sorting techniques to solve practical problems in data
management and processing.

9.0 Introduction

Sorting is a fundamental operation in computer science, used to arrange
data in a specific order. Efficient sorting is crucial for optimizing search
algorithms and enhancing data retrieval. This unit delves into various
sorting techniques, categorized by algorithmic paradigms, and evaluates
their performance and applications.

9.1 Brute Force Approach

Brute force sorting algorithms use straightforward methods to organize data
but may lack efficiency for large datasets.

9.1.1 Sequential Search

e Searches for an element by iterating through each item in the list.
o Complexity: O(n) for unsorted data.

9.1.2 Bubble Sort

e Repeatedly swaps adjacent elements pthey are in the wrong order.
e Algorithm:

1. Compare adjacent elements.

2. Swap if the first is greater than the second.

3. Repeat for all elements until no swaps are needed.
o Complexity: O(n2).

Example (C++):

#include <iostream>
#include <vector>
using namespace std;

void bubbleSort(vector<int>& arr) {
int n = arr.size();
for(int i=0;i < n; i++) {
for(intj=0;j <n-i-1;j++){
if (arr[j] > arr[j + 1]) {
swap(arr[j], arr[j + 1]);
}
}
}
}

int main() {
vector<int> arr = {64, 23, 25, 57, 22, 61, 90};
bubbleSort(arr);
cout << "The Sorted array: ";
for (inti = 0;i < arr.size(); i++) {
cout << arrfi] <<"";

}

return O;

}

9.1.3 Selection Sort

e Selects the smallest element from the unsorted portion and swaps it
with the first unsorted element.
o Complexity: O(n2).

9.2 Decrease-and-Conquer Approach

This approach solves problems by reducing their size at each step.

9.2.1 Insertion Sort

e Builds the sorted array one element at a time by inserting elements
into their correct position.
e Algorithm:
1. Start with the second element.
2. Compare it with previous elements and insert it into the correct
position.
o Complexity: O(n?) in the worst case.

9.2.2 Binary Search

e Efficiently searches for an element in a sorted list by dividing the
search space into halves.
o Complexity: O(logn).

9.3 Divide-and-Conquer Approach

This approach splits the problem into smaller subproblems, solves them
recursively, and combines the results.

9.3.1 Quick Sort

e Selects a pivot and partitions the array éﬁch that elements less than
the pivot are on the left and greater on the right.
o Complexity:
o Best Case: O(nlogn).
o Worst Case: O(n?) (when pivot selection is poor).

9.3.2 Merge Sort

e Divides the array into halves, sorts each half, and merges them.
o Algorithm:

1. Split the array into halves.

2. Recursively sort each half.

3. Merge the sorted halves.
o Complexity: O(nlogn).

Example (C++):

/I Implementation of Merge Sort Algorithm in C++
#include <iostream>

#include <vector>

using namespace std;

void mergeSort(vector<int>& arr);
void merge(vector<int>& arr, vector<int>& left, vector<int>& right);

int main() {
vector<int> arr = {100, 37, 10, 6, 45, 1, 16};

cout << "Before Sorting: ";
for (int num : arr)

cout << num<<"";
mergeSort(arr);

cout << "\nAfter Sorting: ";
for (int num : arr)
cout << num<<"";

return O;

}

void mergeSort(vector<int>& arr) {
int size = arr.size();
if (size < 2)
return;

int mid = size / 2;
vector<int> left(arr.begin(), arr.begin() + mid);
vector<int> right(arr.begin() + mid, arr.end());

mergeSort(left);
mergeSort(right);
merge(arr, left, right);

}

void merge(vector<int>& arr, vector<int>& left, vector<int>& right) {
int ISize = left.size(), rSize = right.size();
inti=0,j=0,k=0;

}

9.4 Transform-and-Conquer Approach

Transforms data to simplify sorting.

while (i < 1Size && j < rSize) {
if (left[i] <= right[j]) {
arr[k++] = left[i++];
} else{
arr[k++] = right[j++];
}
}

while (i < ISize) {
arr[k++] = left[i++];

}

while (j < rSize) {
arr[k++] = right[j++];
}

9.4.1 Heap Sort

e Uses a binary heap to sort elements.

e Algorithm:

1. Build a max heap.
2. Extract the largest element (root) and rebuild the heap.
o Complexity: O(nlogn).

9.5 Linear Sorting Algorithms

Efficient algorithms for specific scenarios.

9.5.1 Counting Sort

e Counts occurrences of each element and arranges them in order.
o Complexity: O(n+k), where k is the range of input values.

9.5.2 Radix Sort

e Processes digits of numbers starting from the least significant to the
most significant.
o Complexity: O(d-(ntk)), where d is the number of digits.

9.5.3 Bucket Sort

e Divides the input into buckets, sorts each bucket, and concatenates
the results.
o Complexity: O(n) for uniform distributions.

9.6 Unit Summary

In this unit, we explored:

e Various sorting algorithms and their classifications.
e Algorithmic paradigms like brute force, divide-and-conquer, and
transform-and-conquer.

e Practical sorting algorithms like Quick Sort, Merge Sort, and Heap
Sort.

Practice Problems

1. Implement Bubble Sort, Quick Sort, and Merge Sort in C++,
2. Analyze the time complexity of Radix Sort for a dataset of large

integers.
3. Write a program to sort a list of names using Bucket Sort.

Quiz

1. What is the worst-case complexity of Quick Sort?
2. Which sorting algorithm is best suited for nearly sorted data?

Practical Questions

1. Write a program to find the top 10 largest elements in an array using

Heap Sort.
2. Compare the performance of Insertion Sort and Merge Sort for small

and large datasets.

Unit 10: Hashing Techniques

Course Objectives

e To understand the principles and techniques of hashing.
e To analyze and implement hashing-based search operations.

e To explore strategies for collision resolution and their efficiency.

Course Qutcomes

e Design and evaluate hash functions for various applications.

e Analyze the performance of hashing-based search operations.

e Apply collision resolution techniques to optimize data storage and
retrieval.

10.0 Introduction

Hashing is a technique used to map data to a fixed-size representation
called a hash value. It is widely employed in data structures such as hash
tables, enabling efficient storage and retrieval operations. By distributing
data across a range of indices in a table, hashing ensures that operations
like search, insert, and delete are performed efficiently.

This unit introduces the foundational concepts of hashing, explores
different hash functions, and addresses challenges like collisions and their
resolution. The focus is on understanding how hashing optimizes search
operations and its applications in real-world scenarios.

10.1 Hash Functions

A hash function is a mathematical formula that converts input data into a
fixed-size hash value. An ideal hash function distributes data uniformly
across the hash table to minimize collisions.

Properties of a Good Hash Function

¢ Deterministic: The same input always produces the same hash
value.

¢ Uniform Distribution: Hash values are evenly distributed to
minimize clustering.

¢ Minimizes Collisions: Reduces the likelihood of two inputs
producing the same hash value.

o Fast Computation: Efficient to compute for real-time operations.

Examples of Hash Functions

1. Division Method:
o Formula: h(k)=k mod m
o Here, k is the key, and m is the size of the hash table.
o Example:
Key: 15, Hash Table Size: 7
h(15)=15%7 =1

2. Multiplication Method:
o Formula: h(k)=|m(kxAmod 1)|
o Ais a constant (e.g., A=0.618).

3. Folding Method:
o Break the key into parts and combine them.
o Example: Key = 123456, split into 123 and 456, then sum
them.

4. Mid-Square Method:
o Square the key and extract the middle digits.
o Example:
Key: 56
Square: 3136
Extract: Middle two digits = 13

10.2 Collisions in Hashing

@ollisions occur when two keys produce the same hash value. Effective
collision resolution techniques are crucial for maintaining the performance
of hashing-based systems.

Types of Collisions

1. Primary Clustering: Multiple keys map to the same or adjacent slots.
2. Secondary Clustering: Keys with the same hash value create

clusters.
3. Chaining: Storing multiple elements in the same slot using linked

lists.

Collision Resolution Techniques
1. Open Addressing

e Linear Probing:
o Incrementally check the next slot until an empty one is found.
o Formula: h'(k,i)=(h(k)+i) mod m
¢ Quadratic Probing:
o Check slots using a quadratic function.
o Formula: h'(k,i)=(h(k)+i2) mod m

¢ Double Hashing:

o Use a secondary hash function to compute step size.
o Formula: h'(k,i)=(h4(k)+ixhy(k)) mod m

2. Chaining

e Store all elements with the same hash value in a linked list.

3. Rehashing

e \When the load factor exceeds a threshold, resize the table and
reapply the hash function.

Example: Resolving Collisions

Given a hash table of size 7 and keys [10, 22, 31, 40, 59], resolve collisions
using linear probing.

Key
10
22
31
40

59

Hash Value (h(k))

10%7=3
22%7 =1
31%7=3
40%7=5
59%7=3

Placement
Slot 3
Slot 1
Slot 4 (next empty slot)
Slot 5

Slot 6 (next empty slot)

10.3 Analysis of Search Operations

The efficiency of search operations in hashing depends on factors such as

table size, load factor, and collision resolution strategy.

Key Metrics

e Load Factor (a): Ratio of ge number of elements to the size of the
hash table.
o Formula: a=n/m, where n = number of elements, m = table size.
o Higher a increases the likelihood of collisions.

e Search Time:
o Best Case: O(1) (direct access without collisions).
o Average Case: Depends on the collision resolution strategy.
o Worst Case: O(n) (all elements in the same slot).

Practical Considerations

o Trade-offs: Smaller tables save memory but increase collisions,
while larger tables minimize collisions at the cost of memory usage.

o Applications: Hashing is widely used in dictionaries, databases, and
caching systems.

10.4 Unit Summary

In this unit, we explored hashing techniques, focusing on hash functions,
collision resolution, and the analysis of search operations. Hashing is a
foundational concept in computer science, enabling efficient data storage
and retrieval. By mastering these techniques, you can design robust
systems for real-world applications.

Practice Problems

1. Design a hash function for a hash table of size 10 to store keys [11,
21, 31, 41].

2. Implement a C++ program to demonstrate linear probing for collision
resolution.

3. Analyze the time complexity of double hashing.

Quiz

1. What are the properties of a good hash function?
2. Explain the difference between chaining and open addressing.

Practical Questions

1. Implement a hash table with chaining using linked lists in C++.
2. Compare and contrast linear probing and double hashing in terms of
performance.

Module 4

Unit 11: Graph Algorithms

Course Objectives

e To understand the fundamental concepts of graph representations
and their applications.

e To learn traversal techniques and their role in exploring graph
structures.

e To explore key aigorithms for Minimum Spanning Trees, shortest
paths, and dynamic programming applications in graphs.

Course Outcomes

e Represent and manipulate graphs effectively in computational
scenarios.

e Implement traversal algorithms for problem-solving.

e Apply graph algorithms to solve real-world problems such as network
design and pathfinding.

11.0 Introduction

Graphs are a fundamental data structure that models relationships between
objects. Used across diverse domains such as social networks,
transportation systems, and communication networks, graph algorithms
provide efficient ways to analyze and navigate these structures. This unit
explores graph representations, traversal techniques, and core algorithms
for spanning trees, shortest paths, and dynamic programming applications
in graphs.

11.1 Graph Representations

Graphs @an be represented in various ways, depending on their structure
and intended use. The two most common representations are:

1. Adjacency Matrix:
o A 2D array where each cell (i, j) is 1 if there is an edge from

vertex i to vertex j, and o otherwise.

o Advantages:
m Fast lookup for edge existence: O(1).
m Easy to implement for dense graphs.

o Disadvantages:
m High memory usage for sparse graphs.

2. Adjacency List:
o Each vertex maintains a list of all its adjacent vertices.

o Advantages:
m Space-efficient for sparse graphs.
m Easier traversal of neighbors.

o Disadvantages:
m Slower edge existence check: O(n).

Example:
For a graph with vertices {A, B, C} and edges {(A, B), (B, C)}:
Adjacency Matrix:
A BC
A 01O
B O O 1

C 00O

Adjacency List:

e A:[B]
e B:[C]
o C:]

11.2 Graph Traversal Techniques: BFS
and DFS

Graph traversal algorithms explore nodes and edges systematically. The
two primary techniques are:

Breadth-First Search (BFS)

e Approach:
o Explore all neighbors of the current vertex before moving to the
next level.
o Implemented using a queue.
o Time Complexity: O(V + E), where V is vertices and E is edges.
e Applications:
o Shortest path in unweighted graphs.
o Finding connected components.

Depth-First Search (DFS)

e Approach:
o Explore &s far as possible along each branch before
backtracking.
o Implemented USing a stack (explicit or recursion).
o Time Complexity: O(V + E).
e Applications:
o Detecting cycles in graphs.
o Topological sorting.

11.3 Minimum Spanning Trees (MST):
Prim’s and Kruskal’s Algorithms

Prim’s Algorithm

o Objective: Build an MST by adding the smallest edge connecting a
vertex in the tree to a vertex outside.
e Approach:
o Use a priority queue to select the smallest edge.
o Time Complexity: O(E log V) with a priority queue.

Kruskal’s Algorithm

o Objective: Build an MST by adding edges in increasing order of
weight, ensuring no cycles.
e Approach:
o Use a union-find structure to detect cycles.
o Time Complexity: O(E log E).

11.4 Single Source Shortest Paths:
Dijkstra’s Algorithm

o Objective: Find the shortest path from a source vertex to all other
vertices in a graph with non-negative edge weights.
e Approach:
o Maintain a priority queue to process vertices with the smallest
known distance.
o Time Complexity: O(V + E log V) with a priority queue.

Example:
Given the graph:

o Vertices: {A, B, C, D}
o Edges: {(A, B, 1), (B, C, 2), (A, C, 2), (C, D, 1)}

Dijkstra’s Algorithm calculates the shortest distances as:

e Froma: {A: @, B: 1, C: 2, D: 3}

11.5 Dynamic Programming in Graphs

Dynamic programming provides efficient solutions to complex graph
problems by breaking them into smaller subproblems. Examples include:

1. All-Pairs Shortest Path:
o Floyd-Warshall Algorithm: %mputes shortest paths between all
pairs of vertices in O(V3).

2. Longest Path in a Directed Acyclic Graph (DAG):
o Use topological sorting to calculate the longest path efficiently.

11.6 Unit Summary

This unit explored fundamental graph concepts, representations, and
traversal techniques. We covered key algorithms such as Prim’s and
Kruskal’s for MST, Dijkstra’s for shortest paths, and dynamic programming
applications like Floyd-Warshall. These concepts form the foundation for
solving advanced computational problems in various domains.

Practice Problems

1. Implement BFS and DFS for a given graph.
2. Compare Prim’s and Kruskal’'s algorithms with an example graph.
3. Use Dijkstra’s Algorithm to find the shortest path in a weighted graph.

Quiz

1. What are the primary differences between adjacency matrix and
adjacency list representations?
2. How does DFS detect cycles in a graph?

Practical Questions

1. Implement Kruskal’'s Algorithm using the union-find technique.
2. Analyze the time complexity of BFS and DFS with an example graph.

Unit 12: Algorithmic Design
Techniques

Course Objectives

e To understand key algorithmic design paradigms.

e To apply design techniques to solve complex computational
problems.

e To analyze and compare algorithmic approaches.

Course Outcomes

e Implement and optimize algorithms using different design techniques.

e Evaluate the efficiency of algorithms designed with various
paradigms.

e Solve real-world problems using appropriate algorithmic strategies.

12.0 Introduction

Algorithmic design techniques form the core of problem-solving in computer
science, offering structured methods to develop efficient dlgorithms. These
techniques help in addressing a wide range of computational challenges by
leveraging specific paradigms suited to the problem's nature.

In this unit, we explore:

o Greedy Algorithms: Optimizing solutions step-by-step.

o Divide-and-Conquer: Breaking down problems into manageable
subproblems.

e Dynamic Programming: Solving complex problems by storing
intermediate results to avoid redundancy.

By understanding these techniques, you can choose the most appropriate
approach fot a given problem and analyze its efficiency.

12.1 Greedy Algorithms

Greedy algorithms make locally optimal choices at each step with the hope
of finding a global optimum. This approach is’particularly effective for
problems that exhibit the greedy-choice property and optimal substructure.

Key Characteristics:

¢ Greedy-Choice Property: A global solution can be constructed by
selecting local optima.

o Optimal Substructure: A problem’s optimal solution can be
composed of optimal solutions to its subproblems.

Examples of Greedy Algorithms:

1. Activity Selection Problem:
o Given &'set of activities with start and end times, select the
maximum number of activities that don't overlap.

o Algorithm:
1. Sort activities by their finish time.
2. Select the first activity and iteratively choose the next

non-overlapping activity.
o Complexity: O(nlogn) (due to sorting).

2. Huffman Coding:
o Constructs an optimal prefix code for data compression.
o Algorithm:

1. Create a priority queue with all characters and their
frequencies.
2. Extract the two smallest frequencies, combine them, and
reinsert into the queue.
3. Repeat until the queue contains a single node.
o Complexity: O(nlogn).

12.2 Divide-and-Conquer

This paradigm involves dividing a problem into smaller subproblems,
solving each recursively, and then combining their solutions.

Key Steps:

1. Divide: Break the problem into smaller, independent subproblems.

2. Conquer: Solve each subproblem recursively.

3. Combine: Merge the solutions of the subproblems to form the overall
solution.

Examples of Divide-and-Conquer Algorithms:

1. Merge Sort:
o Divides the array into halves, sorts each recursively, and
merges the sorted halves.
o Complexity: O(nlogn).

2. Quick Sort:
o Selects a pivot, partitions the array around it, and sorts the
partitions recursively.

o Complexity: Average case O(nlogn); Worst case O(n2).

3. Binary Search:
o Searches for an element in a sorted array by dividing the
search range in half.
o Complexity: O(logn).

Advantages and Applications:

e Efficient for divide-and-conquer-friendly problems like sorting and
searching.
e Often used in parallel computing for independent subproblem

processing.

12.3 Dynamic Programming

Dynamic Programming (DP) solves problems by breaking them into
overlapping subproblems and storing their solutions to avoid redundant
computations. It is particularly useful for optimization problems.

Key Characteristics:

o Overlapping Subproblems: Subproblems are solved multiple times

in a naive approach.
e Optimal Substructure: The solution to a problem depends on the

solutions to its subproblems.

Steps to Design a DP Solution:

1. Identify if the problem has g/erlapping subproblems and optimal
substructure.
2. Define the state variables to represent the problem.

w

Derive a recurrence relation to transition between states.

4. Implement the solution iteratively or recursively with memoization.

Examples of Dynamic Programming:

1. Fibonacci Numbers:

o

(e]

Recursive Approach:
#include <iostream>
#include <unordered_map>
using namespace std;

long long fib(int n, unordered_map<int, long long>& memo) {
if (n<=1){
return n;
}
if (memo.find(n) == memo.end()) {
memo[n] = fib(n - 1, memo) + fib(n - 2, memo);
}

return memo[n];

}

int main() {

unordered_map<int, long long> memo;

int n = 10; // Example input

cout << "Fibonacci number " << n << " is: " << fib(n, memo)
<< endl;

return O;

}
Complexity: O(n).

2. Knapsack Problem:

o Maximizes the value of items in a knapsack without exceeding
the weight limit.
o Algorithm:
1. Define dp[i][w] as the maximum value achievable with the
first i items and weight limit w.

2. Transition Relation:
dp[i][w]=dp[i—1][w] if item i is excluded.
dp[i][w]=max(dp[i—1][w],dp[i—1][w—wt[i]]+Val[i])
if item 1 is included.

o Complexity: O(n-W), where n is the number of items and W is the
weight limit.

12.4 Unit Summary

In this unit, we explored three fundamental algorithmic design paradigms:

o Greedy Algorithms: Effective for problems with the greedy-choice
property and optimal SLﬁ‘.tructure.

« Divide-and-Conquer: i@eal for problems that can be broken into
independent subproblems.

¢ Dynamic Programming: Handles problems with g/erlapping
subproblems and optimal substructure.

Understanding these techniques equips you with the tools to @kle a wide
range of computational challenges effectively.

Practice Problems

1. Solve the Activity Selection Problem using a greedy approach.
2. Implement Merge Sort and analyze its complexity.
3. Solve the 0/1 Knapsack Problem using dynamic programming.

Quiz

1. What are the key characteristics of a problem suited for the greedy
approach?

2. Explain the difference between Divide-and-Conquer and Dynamic
Programming with examples.

3. Write a recurrence relation for the Fibonacci sequence.

Practical Questions

—_

. Implement Huffman Coding for data compression.

2. Compare and contrast the performance of Quick Sort and Merge
Sort.

3. Solve the Longest Common Subsequence problem using dynamic

programming.

Module 5

Unit 13: Tractability and
Computability

Course Objectives

e To understand the principles of computability and tractability in
algorithms.

e To analyze and differentiate between computational complexity
classes.

e To explore the significance of P, NP, NP-complete, and NP-hard
problems in computer science.

Course Outcomes

e Understand the limitations of algorithmic computation.

e Classify problems based on their computational complexity.

e Apply the concepts of computational classes to assess algorithm
feasibility.

13.0 Introduction

Tractability and computability are foundational concepts in theoretical
computer science that define the boundaries of what can be solved
efficiently by algorithms. Tractability pertains to whether a §roblem can be
solved within a reasonable amount of time, while computability examines
whether a problem can be solved at all, regardless of time constraints.

This unit focuses on understanding these concepts, classifying problems
into computational complexity classes, and exploring the implications of
these classifications on real-world problem-solving.

13.1 Computability of Algorithms

ﬁomputability determines whether a problem can be solved algorithmically.
is a fundamental concept rooted in the work of Alan Turing, who
introduced the Turing Machine model as a mathematical abstraction for
computation.

Key Concepts

o Decidable Problems:
o Problems for which an algorithm can always provide a correct
yes/no answer within a finite amount of time.
o Example: Determining whether a number is prime.

e Undecidable Problems:
o Problems for which no algorithm can guarantee a solution for all
possible inputs.
o Example: The Halting Problem, which asks whether a given
program will halt or run indefinitely.

Example: The Halting Problem

The Halting Problem is a classical example of an undecidable problem.
Given a program and its input, it is impossible to construct an algorithm that
determines whether the program will terminate.

Implications:

e Highlights the limitations of computational systems.
e Emphasizes the need for theoretical analysis when designing
algorithms.

13.2 Computability Classes: P, NP, NP-
complete, NP-hard

The classification of problems into computational classes helps determine
the feasibility of solving them within practical constraints.

13.2.1 Class P (Polynomial Time)

e Problems that can ge solved in polynomial time by a deterministic
algorithm.

e Example: Sorting an array (O(n log n)).

o Significance: Problems in P are considered efficiently solvable.

13.2.2 Class NP (Nondeterministic Polynomial Time)

e Problems for which a solution can be verified in polynomial time, even
if finding the solution might not be efficient.

e Example: The Traveling Salesman Problem (TSP).

o Significance: NP includes problems with solutions that are hard to
compute but easy to verify.

13.2.3 NP-complete Problems

e Subset of NP problems that are as hard as any problem in NP.

e [f a polynomial-timg solution exists for one NP-complete problem, all
NP problems can e solved in polynomial time.

e Example: The Satisfiability Problem (SAT).

o Significance: Used to identify problems with practical computational
challenges.

13.2.4 NP-hard Problems

e Problems that are at least as hard as the hardest problems in NP but
may not be in NP themselves.

e Example: The Halting Problem.
o Significance: These problems are used to explore the boundaries of

computational feasibility.

Diagram: Relationship Between P, NP, NP-complete,
and NP-hard

A Venn diagram depicting tfie relationship between these classes can
clarify their distinctions and overlaps.

13.3 Unit Summary

In this unit, we explored the concepts of tractability and computability,
focusing on the limitations of algorithms and their classification into
computational complexity classes. By understanding P, NP, NP-complete,
and NP-hard problems, you can assess the feasibility of algorithmic
solutions and their implications for practical applications.

Practice Problems

—_

. Define the difference between P and NP classes.
2. Provide an example of an undecidable problem and explain why it is
undecidable.

3. Explain the significance of NP-complete problems in algorithm
design.

Quiz

1. What is the Halting Problem, and why is it significant in computability
theory?

Practical Questions

1. Analyze whether the Traveling Salesman Problem belongs to the
class P, NP, NP-complete, or NP-hard.

2. Implement a solution for a problem in class P and measure its time
complexity.

Unit 14: Advanced Algorithmic
Techniques

Course Objectives

e To understand advanced techniques for solving complex
computational problems.

e To learn the principles of backtracking, branch-and-bound,
approximation, and randomized algorithms.

e To explore the practical applications of these techniques in real-world

problem-solving.

Course Outcomes

e Develop and implement algorithms using advanced methodologies.
e Analyze the efficiency and practicality of various algorithmic

techniques.
e Apply appropriate techniques to optimize solutions for complex

problems.

14.0 Introduction

As computational problems become increasingly complex, advanced
algorithmic techniques provide tools to tackle these challenges effectively.
This unit delves into four significant techniques:

o Backtracking: A recursive strategy for solving problems by exploring
all possible solutions.

o Branch-and-bound: A systematic approach to solving optimization
problems.

o Approximation Algorithms: Strategies for finding ﬂear-optimal
solutions when exact solutions are computationally infeasible.

¢ Randomized Algorithms: Algorithms that utilize randomization to
simplify problem-solving or improve performance.

14.1 Basics of Backtracking

Backtracking is a recursive technique used for solving combinatorial
problems. It involyes building a solution incrementally, abandoning a
solution as soon as it is determined that it cannot lead to a feasible

solution.

Key Concepts

e Recursive Exploration:
o Explore each possible solution recursively.
o Abandon paths that do not satisfy constraints (pruning).

e Applications:
o N-Queens Problem
o Sudoku Solver
o Subset Sum Problem

Example: N-Queens Problem

Place N queens on an NxN chessboard such that no two queens threaten
each other.

Algorithm:

1. Start in the leftmost column.

2. If all queens are placed, return success.

3. Try placing the queen in each row of the current column.

4. If placement is safe, recursively place the queen in the next column.

5. If placing leads to no solution, backtrack and try the next row.
C++Code:

#include <iostream>
#include <vector>
using namespace std;

bool isSafe(vector<vector<int>>& board, int row, int col) {
for (inti=0;i < col; i++) {
if (board[row][i] == 1)
return false;
}
for (inti=row, j=col;i>=0 &&j>=0; i-, j--) {
if (board[i][j] == 1)
return false;
}
for (inti = row, j = col; i < board.size() && j >= 0; i++, j-) {
if (board[i][j1 == 1)
return false;

}

return true;

}

bool solveNQueens(vector<vector<int>>& board, int col) {
if (col >= board.size())
return true;

for (inti=0; i < board.size(); i++) {
if (isSafe(board, i, col)) {
board[i][col] = 1;
if (solveNQueens(board, col + 1))
return true;
board(i][col] = O;
}

}

return false;

}

int main() {
int n = 8; // Example size for the chessboard
vector<vector<int>> board(n, vector<int>(n, 0));

if (solveNQueens(board, 0)) {
cout << "Solution:\n";
for (auto& row : board) {
for (int cell : row) {
cout<<(cell?"Q":".");
}
cout << endl;
}
} else {
cout << "No solution exists." << endl;

}

return O;

14.2 Branch-and-Bound Methodology

Branch-and-bound is a systematic technique for solving optimization
problems. It involves dividing the problem into smaller subproblems and

using bounds to eliminate suboptimal solutions.

Key Concepts

e Branching:

o Divide the problem into smaller subproblems.

¢ Bounding:
o Calculate bounds for subproblems to eliminate infeasible paths.

Applications

e Knapsack Problem
e Traveling Salesman Problem (TSP)

Example: Knapsack Problem

Find the maximum value that can be obtained by selecting items within a
weight limit.

14.3 Approximation Algorithms

Approximation algorithms are used for NP-hard problems where finding an
exact solution is computationally infeasible. These algorithms provide
solutions that are close to the optimal.

Key Concepts

o Approximation Ratio: Measures the quality of the approximation.
o Greedy Approaches: Commonly used in approximation algorithms.

Applications

e Vertex Cover
e Traveling Salesman Problem (TSP)
e Set Cover Problem

Example: Vertex Cover

Find a minimum subset 6 vertices such that every edge in ﬂe graph is
incident to at least one vertex.

14.4 Randomized Algorithms

Randomized algorithms incorporate random choices in their logic, often
simplifying problem-solving or improving efficiency.

Key Concepts

o Types:
o Las Vegas Algorithms: Always produce a correct result, with

running time varying.
o Monte Carlo Algorithms: May produce incorrect results with a
small probability.

e Applications:
o Quick Sort (randomized pivot selection).

o Randomized Graph Traversal.

Example: Randomized Quick Sort

1. Choose a pivot element randomly.
2. Partition the array around the pivot.
3. Recursively sort the partitions.

14.5 Unit Summary

In this unit, we explored advanced algorithmic techniques including
backtracking, branch-and-bound, approximation algorithms, and
randomized algorithms. These methodologies enable solving complex
problems more effectively and efficiently. By understanding their principles
and applications, you can select the most suitable approach for a given
problem.

Practice Problems

1. Implement the N-Queens problem using backtracking.
2. Solve the 0/1 Knapsack Problem using branch-and-bound.
3. Write a randomized algorithm for finding the median of an array.

Quiz

1. What is the difference between Las Vegas and Monte Carlo
algorithms?
2. Define the term "approximation ratio" and explain its significance.

Practical Questions

1. Apply branch-and-bound {&’solve the Traveling Salesman Problem
for a small graph.

2. Implement and compare the efficiency of a randomized and a
deterministic Quick Sort algorithm.

